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IME'ACT ON A COMPRESSIBLE FLUID" 

By I. T. Egorov 

Upon impact of' a soUd body on the plane suxface of a fluid, there 
occurs on the vetted surface of the body an abrupt pressure rise which 
propagates into both media w i t h  the speed of sound. 

Below, we assume the case w h e r e  t he  speed of propagation of sound 
in  the bcdy which falls on the surface of the fluid may be regarded as 
infinitely lasge i n  canparison with tbe speed of propagation of sound 
i n  the fluid; that is, we shaU assume that the falling body is abso- 
lutely r ig id .  
which takes place a t  the beginning of the impact is absorbed by the fluid. 
The hydroQmmic pressures arising thereby are propagated from the con- 
tac t  surface within the fl-d With the speed of sound in the form of 
canpression and expansion waves and are gradually damped. After this, 
they are dispersed l ike impact pressures, reach ever larger regions of 
the f lu id  remote fran the body and becane equal t o  zero; in the fluid 
there remain hydrodynamic pressures corresponding t o  the motion of the 
body after the impact (ref!. 1). 

In  this case, the entire relative speed of the motion 

Neglecting the forces of viscosity and taking into account, furtbr- 
more, that the motion of the f luid begins from a state of rest, accordlag 
Co Thomson's theorem, we mey consider the motion of an i d e a l  canpressihle 
fluid i n  the process of impact t o  be potential. - - _  

W e  emmine tbe case of impact upon the surface of 8. ccunpreseible 
f luid of a f la t  plate of infinite extent or  of a body, the immersed p a r t  
of the surface of which may be called approximately flat. 
we discuss the f i r s t  phase of the impact pressure on the surface of a 
fluid, prior t o  the appearance of a cavity, since at this stage the 
hydrodynamic pressures reach their maximum values. Observations, &ter 
the f a l l  of the bodies on the surface of the fluid, show that the free 
surface of t?x fluid at this stage is  almost completely at rest if one 
does not take into account the small r ise  i n  the neighborhood of the 
boundarb3 of the impact surface. 

In this report 

1. L e t  us consider the motion of a fluid i n  the coordinate sys- 
t e m  Oxy, rlgidly connected w i t h  the solid body (fig. 1). 
selected coordinate system, w e  have as the potential of the velocity of 

In the 



2 NACA !l!M 1413 

the motion cp -in the case of the two-dimensionsl problem - t h e  fo l -  
lowing linearized equation (ref. 2): 

- 
Here, c i s  the speed of sound. The boundary conditions i n  the case 
considered w i l l  be, on the free suTace of the fluid,  

on the surface of the plate, 

* - a y'  
ay (1.3) 

To the conditions required f o r  a unique determination of the solu- 
tion, we add yet another, the condition a t  infinity. Let us use the 
principle of radiation and express the Condition that it is impossible 
to propagate disturbances frcan infinity inside the flow; in other words, 
the waves arising pram the impact dissipate at infinity (ref. 2 ) :  

We shall also introduce the stationary system of coordinates Olxlyl. 
We shall place the ax is  Olxl on the free surface; the axis 4 y l  inside 
the fluid. 

A t  the i n i t i a l  instant of the impact, the motion of the p l e h  is 
determined by the conditions 

Yl = 0 yl' = v for t = 0 (1.5) 

2. We may continue the function cp(xly,t) t o  the upper Wf plane 
ana obtaln t he  function qJ(x,y,t), which is d y t i c  i n  .the entire 

' I  
I 

L 

a .  
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plane with the exception of the cut 1 x I <, E,  y = 0 whereby - 
rp(X,Y,t) = -dx,-y,t) - 

We shall seek the partial integral of equation (1) in the form 

cP(X,Y,t) = $(x,Y)e-Pt (2.1) 

Substituting expression (2.1) into equation (1.1), we obtain 

. ... 

A s s d n g  i n  th i s  equation x = axl, y = ayl, we can bring It into 
the form 

Here, and In w h a t  follms, the subscript 1 for the variables xl 
and y1 is omitted. 

The function *(x,y) m u s t  also satisfy the boundary conditions 

$ = O  far I x ( > l , y = O  & = & v  for ( x I < l , y = O  ay 
(2.4) 

and also the conditions of the principle of radiation 

(2 .5 )  

W e  introduce the elliptical coordinates 5 and q (fig.  2) w i t h  
the  aid of the equalities 

y = sinh g sin q 

This corresponds to the conformal transformtion 
plane z = x + iy into the plane 5 = 6 + iq. F'rom the r b t i o n s h i p s  
i n  equations (2.6), there fol lows 

(2.6) x = Cash 5 COS 

z = cosb f of the 
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. 

To the lines 5 = Constant in the (-plane, there corresponds a 
family of confocal ellipeee i n  the z-plane and to  the lines 
there correspond a famUy of confocal l ~ ~ e r b o l a e ,  orthogonal t o  the 
family of ellipses. 

the region of the coorainate axis x >  1, there corresponds Iqb<". t e degen- To 
us, e = 0, 

erated hyperbola q = 0, 5 7 0 and t o  x < -1, the degenerated mer- 
bola =b, 7 0 .  

q = Constant 

It is easy t o  see that the region of' Interest t o  
1x1 < 1, represents the degenerated ellipse 

W e  may transform equation (2.3) after substitution of equations (2.6), 
w i t h  the aid of Lame'"s relationship (ref.  5) 

into the fnrm 

Assuming its solution i n  the farm q ( S , q )  = F(g)G(q),  we abtain, after 
substitution of equation (2.9) for the functions F and 0, the equa- 
tions of Mathieu 

- 26+ C 0 6  2q)G 0 d2G - + (a 
dr12 

There 
a*p2 e, = 1 $2 e* = -e 8 = -  

4 4c2 

.. 

- -  d2F (a - 2OW &ah 2S)F = 0 
dk2 

(2.10) 

- 
. 

(a is a Constant) (2.11) 
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AS a result of the fact  that a may assume any value, it is 
necessary - i n  order t o  made the solution unique - that the function 

condition defines the multiplicity of eigenvalues u2n+r( 0,) where 
n = 0, 1, 2, . . . . The corresponding family of fundamental functions 
forms a complete orthogonal system. 

The function F(E) must be expressed through the modified Mathieu 
In accordance with 

6 G(q)  i n  the z-plane should be periodic, with the period 2x. This 

functions which satisfy the principle of radiation. 
w h a t  has been said above, we shall seek the potential 
form of an expansion i n  odd Mathieu functions of odd index 

$ ( g , v )  in the 

Here, q, -0) i s  an odd periodic Mathieu function which is  
t h e  solutlon of the first  kind of the first equation of (2.10) and is 
expressedtbroughtrigonometric functions i n  t h e  form of the series 

. 

2n+1 where Ami, the expansion coefficients, are functions of 8. The 

function Nezl(  g , -8) constitutes the cmbined Mathieu function, 
expressedthroughthe product of the Bessel functions of LmaginaIy 
argument in the form of the following series: 

(2.14) 

Here, 
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5 v2 = ke 
* 

L 

k2 = 8 

ce (g,9) is  the odd periodic Mathieu function, Im(vl) is the  Bessel 
f'unction of imagfraary argumeyrt, and &(v2) is a Macdonald f'unction. 
2M.1 

The function N e 6 ~ , ( ~ , - 8 )  bas the fol lar ing asymptotic 

representation: 

where 
t i on  (2.15) tends monotonically toward zero. 
iately that the expression we derived for  the potential  (2.12) sa t i s f i e s  
the principle of radiation. 

The function of the potential (2.12) eatisflee the f i r e t  boundary 
condition (2.4) since, for q = 0 and q = *sy the function st?2wl(?)y-8) 

i s  transformed into zero. 

Y = 2k cosh 5,  whence it is evident tbt for 5 + Q) the func- 
Hence, it follows h m d -  

? 

0 

For determining the arbitrary integration conitant, aZwl, we w e  
the  second boundary condition (eq. (2.4)) which, i n  the e l l i p t i c a l  coor- 
dinate system, is written in t he  form 

Subjecting the expression of the potential  (2.12) t o  the condition 
(2.16), we obtain 

Here 

(2.18) 
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We multiply the equation obtained by 

-R t o  +x and find 

se2M.l(q,4)dqJ integrate *om 

(2.19) 

On the basis of the orthogonality of the Mathieu functions 

In conformity w i t h  the  second condition of. normalization of the 
mthieu  functions (ref.  41, 

Substituting the values of integrals found into equation (2..12) and - .  solving it w i t h  resgect t o  a2ntl, we obtain 

(2.20) 

Substituting, i n  turn, equation (2.20) into equation (2.12), we f ind - 

Taking into account formula (2.11, we introduce the velocity potent ia l  
of the motion of the fluid considered i n  the form .. - 
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The eqpression (2.22) is a partial integral  of the wave equa- 
t i on  (1.1) which satisfies the i n i t i a l  and bow- conditions that 
we set up. 

3. The data obtained regarding the flow of the f lu id  enable us t o  
turn t o  the determination of the hydrodynamic forces. 
we use Lagrange's inte-1. Neglecting the weight and the squares of 
the maepitudes of the absolute velocity of the fluid, we can find the 
overall value of the hydrodynamic forces per unit  width of the plate. 
We integrate the pressure p - po = -podcp/dt along the length of the 

For this purpose, 

- plate and obtain - 

m 
n 

FOITUUI.~ (3.2) is derived for the case of a p+te moving in  an inf i -  

dcp/& above and below the &s of the plate are equal i n  magnitude 
n i t e  fluid. But according t o  the principle of symmetry, the values cp 
and 
and opposite i n  sign. 
plate upon q c t  on the free surface of the fluid is equal t o  half the 
force acting on the plate in  unbounded flow of the fluid: 

Hence, it follows that the force acting on t h e  

For simplification of the further notation w e  -shall mite 

The diagram of the function Le(e) is presented In figure 3. Let 
UB note that 
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Thereby, in the f i r s t  limiting c8se for 8 + 0 
transit ion t o  an inccxupressible f luid 
l ike  k'2. 

(which corresponds t o  8 
c = m), the function &(e) 3 m 

C a r r y i n g  out the differentiation i n  formula (3.3) and subs t i t u tbg  
equation (3.4) , we obtain the f o l l d n g  q r e s s i o n  for determining the 
force of %he impact: 

(y' = ve 4) (3.5) 

Here, y' is. the speed of motion of the plate  during the process of impact, 

In  order t o  determine the parameter p, we substitute equations (3.5) 
into the equation of motion of the plate which, i n  the case of weightless 
impact, bas the form my" = -R. As a result ,  w e  obtain the transcendental 
equation .- 

It is not diff icul t  t o  determine frornthis equaticm, for the given quan- 
t i t i e s  m, a, and pol making use of the diagram of the function Le(S) 
(fig.  3) ,  the value of 0 and, consequently, t he  value o f t h e  parameter 
p. (See (2.11) .) Ts;klag into account equstion (3.6) we obtain the 
ucpression for the force R in the form: R = nave +'; we integrate 
this eqression and obtain 

This relationship permlts us t o  determine the momentum of the f lu id  
for any Instant of t h e  duringthe f i r s t  phase of the impact. 
formula (3.5), we can also determine the kinetic energy of the plate.  

T = T ( t ) ,  the variation with time of the kinetic 

Using 

Figure 4 shows 
energy of t h e  plate  (m = 100 kg sec2 I&, 

upon impct  on water (c = 1,485 m sec-l, 
ethyl alcohol ( c  = 1,170 m sec-l, 
(c = 800 m sec-1, po = 64 Q s e d  m-4). 
csses the diagram of the variation of the momentum of the plate  during 
the process of impact. 

a = 1.10 m, v = 5.0 m sec-1) 
po 3 102 kg sec2 C4); on 

po E 79 kg sec2 m4); and on pentane 
Figure 5 shars for  these same 

Translated by Msry L. Mahler 
National Advisory Committee 
for Aeronautics 
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